Bilkent University

Department of Computer Engineering

Senior Design Project

Microgliss: a microtonal editing tool for world music

High-Level Design Report

Team Members: Artun Cura, Sonat Uzun, Orkan Oztrak
Supervisor: Vis. Prof. Dr. Fazli Can

Jury Members: Assoc. Prof. Dr. Cigdem Gilindiiz Demir, Asst. Prof. Dr.
Can Alkan

Innovation Expert: Burcu Coskun Sengdl

High-Level Design Report
Dec 27, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University
in partial fulfillment of the requirements of the Senior Design Project course CS491

1.Introduction
1.1 Purpose of the system
1.2 Design goals
1.2.1 Compatibility
1.2.2 Extendibility
1.2.3 Responsiveness
1.3 Definitions, acronyms and abbreviations
1.4 Overview

2. Current software architecture

3. Proposed software architecture

3.1 Overview
3.2 Subsystem decomposition
3.3 Hardware/software mapping
3.4 Persistent data management
3.5 Access control and security
3.6 Global software control

No Playback

Playback Active
3.7 Boundary conditions

Set-Up

Initialization

Playback Start

Playback End

Termination

File I/O exception

4. Subsystem services

4.1 Synthesizer Layer
Note Receive
Voice Manager
Effect Manager
Output Manager

4.2 Editor Layer
Note Editor
Synth Editor
Note Read
Note Send

© © © © © © © ww v N~N~Nooo o aabh phpOOWWOWWWNDN

JEE N N O U . N WO (L W —
A A a2 00 OO0 o o

4.3 Communication Layer
Daw manager
Filesystem manager
Osc manager

5. Consideration of Various Factors in Engineering Design

6. Teamwork Details
6.1 Contributing and functioning effectively on the team
6.2 Helping to create a collaborative and inclusive environment
6.3 Taking lead role and sharing leadership on the team

11
12
12
12

12

13
13
13
14

1.Introduction

Microgliss is the new cutting edge note editor and synthesizer that allows you to write
microtonal music and polyphonic glissando using an intuitive node and edge-based
workflow. It will allow users to write music in any tuning system or independent of any tuning
system. It will allow users to add glissandos between any note and edit these glissandos
with further settings. Microgliss is designed keeping in mind the growing interest in
microtonal music around the globe and the common limitations of existing midi/note editors
and synthesizers.

Using midi editors is a common method for composing computer music. But midi editors
have limitations that can’t be solved or only can be solved with non-elegant workarounds.
Some of these limitations are 128 different values for velocity, 128 different note values
(pitch), once a note’s value and velocity are set they can not be changed until that note is
released, enforcement of a grid system for pitch values (as a result of 128 note limitation), no
glissandos for multiple notes, etc.

World music is not constructed on a grid. Every culture has its own unique sounds,
pitches, and scales. But today’s computer systems make the production of world
music(non-western music) harder for the users because all of the systems are constructed
around western culture.

1.1 Purpose of the system

Microgliss is a note editor that solves the mentioned problems in the previous section.
Our paradigm is a workflow consisting of nodes and edges, which corresponds to notes and
glissandos. In microgliss using a grid will be a preference of the user. Every frequency will
be available for their use and each note(each node) might be connected with another node.
This lets users create a seamless movement between them, and start a new age for
computer music.

Briefly, the purpose of the Microgliss is to remove the limitations of the western-based
computer music system and let users explore a fresh interface that embraces world music.
Also developing this product as a plugin will let users use this within their current Digital
Audio Workstation. So no major change will be required for the users’ music production
environment. This means users will be more willing to combine Microgliss with their existing
workflows.

1.2 Design goals

1.2.1 Compatibility

Microgliss should run on all DAW’s which support the VST format. Users should be able
to import MIDI files generated from different applications or read the data directly from DAW.

Microgliss should be able to emit OSC messages and which can be interpreted by a
different synthesizer.

1.2.2 Extendibility

Editor and the synthesizer part should be able to connect via OSC protocol and they
should be separable programs. This will enable us to extend the ecosystem of our product in
the future (it can work with other synthesizers built by us or others).

1.2.3 Responsiveness

The editor should be able to communicate the changes made in it to the synthesizer, in
real-time, and during playback. This aids in the workflows of the users.

1.3 Definitions, acronyms and abbreviations

Microtonal Music: Music that consists of intervals that are smaller than a semitone. This
term also includes any tuning system which differs from the western 12-tone tradition.

Synthesizer: An electronic musical instrument that generates audio signals.
Glissando: Sliding from one note to another seamlessly.

DAW: Digital Audio Workstation. Comprehensive musical programs that are designed for
recording, editing, and producing music.

Automation: Automation in the context of DAW'’s is lines usually drawn by hand to change
parameters of a track (eg: volume/pan) and/or a plugin (eg: mix) over time.

VST: A plug-in format for a digital audio workstation.

OSC: Open Sound Control. A protocol for networking sound synthesizers, computers, and
other multimedia devices for purposes such as musical performance.

JUCE: An open-source C++ Framework that is used for the development of desktop and
mobile applications for GUI and Audio tools.

Trello: A basic project management tool. Its main use is for Agile project development but
we will also use Trello with the Iterative approach.

Note: A symbol denoting a musical sound.

MIDI: Musical Instrument Digital Interface. A communication protocol for musical instruments
and controller devices.

Preset: Pre-saved synthesizer settings. They can also be produced by different professional
sound-designers for end-user use.

Sample: A sample, which is a floating point value, is the smallest component of the
digital representation of the sound. A one second sound stored in a computer consists of
over 40000 samples (usually 44100 or 48000). These samples are written into buffers in
and speakers vibrate according to the data in the buffers, therefor generating sound.
Each sample represents subtle changes in air pressure which we perceive as sound.

1.4 Overview

Microgliss is a note editor and synthesizer that allows you to write microtonal music and
polyphonic glissandos using a node and edge-based workflow. A workflow consisting of
nodes and edges, which corresponds to notes and glissandos, isn’t common in other note
editors, so the editing capabilities of the editor are beyond any existing tool.

We plan to export our application in VST (Virtual Studio Technology) format thus allowing
it to run on any DAW (Digital Audio Workstation) as a plugin. It will have two separate
sections and views that correspond to them. It will have a note editor to compose by
inputting notes and glissandos and a synthesizer to play them. The editor should encompass
the entire timeline of a project.

In addition to the synthesizer section of microgliss, we want our program to work with
other synthesizers by using the Open Sound Control protocol, to extend the use and let all
users work with their favorite synthesizers. OSC also has other uses such as light control
and microgliss can be used for such side-purposes.

The next section of this high-level design report explains the details of the system in
terms of Software Architecture including subheaders like Subsystem Decomposition,
Hardware and Software Mapping, Data Management, Access Control Policies, Security,
Global Control Flow, Boundary Conditions, and Subsystem Services. We expect our design
to fulfill the requirements which we discussed in the Analysis report and conclude with a
useful program that lets any type of musicians to get in the microtonal world, experiment,
and compose easily. In the other section Consideration of Various factors in Engineering
design, we will discuss whether if Microgliss contains any risks and in the last section
Teamwork Details we will discuss the details of our team under the Contributing and
functioning effectively on the team, Helping to create a collaborative and inclusive
environment, Taking lead role and sharing leadership on the team headers.

2. Current software architecture

To compensate for the limitations imposed by the MIDI protocol that was established in
1981, MIDI instruments have many features that allow additional control over the sound. For
example, ADSR (Attack, Decay, Sustain, Release) envelope and LFO (Low-Frequency
Oscillators) can be used to modify the pitch and velocity value of a note through its lifetime.
There are also MIDI editors that have tried to break the limitations of traditional MIDI editors,
such as the Bitwig DAW, in which it is possible to put in off-grid nodes and polyphonic
glissandos and play them with instruments that are native to Bitwig.

And Melodyne, an editor plugin which is used to alter individual notes in recordings.
However, the use cases and flexibilities offered by these programs are different than those
of Microgliss. Bitwigs editor only works on Bitwig DAW. And Melodyne alters pre-recorded
sound instead of creating sounds from scratch. Also, as mentioned before, nodes and edges
in the workflow are uncommon, giving Microgliss much freedom in its editing. Therefore,
Microgliss will not rely on existing software architecture but it might occasionally derive ideas
from them.

3. Proposed software architecture

3.1 Overview

This section will display the proposed architecture via the subsystem decomposition, then
explain every layer individually for better understanding. Management of persistent data,
security, control of access, and global software, in addition to boundary conditions, will also
be discussed in detail. Further information regarding Microgliss can be found here:
https://microgliss.github.io

https://microgliss.github.io/

3.2 Subsystem decomposition

1
MICROGLISS
1
SYNTHESIZER LAYER
NOTE RECIEVE VOICE MANAGER
EFFECT MANAGER OUTPUT MANAGER
EDITOR LAYER
1 1
NOTE EDITOR SYNTH EDITOR
1 —1
NOTE READ NOTE SEND
COMMUNICATION LAYER
DAW MANAGER FILESYSTEM MANAGER 0SC MANAGER

3.3 Hardware/software mapping

Microgliss must run on any DAW that supports the VST format. Users should be able to
import MIDI files generated from different applications or read the data directly from DAW.
Because it is a plugin, Microgliss will need no hardware mapping other than the mappings of
the DAW it runs on. DAW'’s are usually programs that run on single

For the software components of Microgliss:

e C++ will be used because most programming languages aren't suitable for basic
audio functionalities and VST generation support.

e JUCE will be used in the implementation of an audio/Ul generation framework based
on C++,

https://app.diagrams.net/?page-id=JpS-i4R1nzz-4CgqbxH7&scale=auto#G1bxXGwkO7gSOhyyTm3RvVGj_yj6Olwhv0

e A new audio programming language SOUL might be tried for some portion of the
project but we are aware that it is new, and might have some inconsistencies. If we
encounter any problems this part will be implemented with C++/JUCE too.

3.4 Persistent data management

Two different kinds of data must persist in the system: parameters of the synthesizers and
compositions made in the note editor. DAW’s provide interfaces to make these data
persistent across sessions/saves. If we decide to build a standalone build we might need to
provide our own file format to be able to save and load projects. In addition to making the
data persistent, making it reusable is also a concern in audio production applications.
Suppose that by tweaking the settings of the synthesizers you have come across a sound
that you liked a lot and want to be able to use it across multiple projects. Most synthesizers
provide an option to save parameters of the sound as a preset and easily load it in other
instances of the synthesizer. Microgliss will also have an option to save and load synthesizer
parameters as presets. We might also include default/factory presets in order give starting
points for users to create their sounds.

3.5 Access control and security

In a single-user system, there is only one human actor. Microgliss is a single-user system.
But also there is also a System actor that regulates the operations between the user and the
DAW. This is why the actors which have different rights over the data and functionality are
the system itself and the current user for Microgliss. These two need to be separated
because a user can directly move a previously saved preset to the presets folder (presets
are pre-programmed synthesizer settings) and read it but can’t write unless they use the
microgliss’ interface. Also, the system might use DAW’s provided interface for saving and
reading, but the users are not allowed to reach and manipulate it.

Each user the data in their program (node editor and synthesizer settings) should be
secure and available for the user itself. We applied the Group Based Access Control
Scheme for the access rights of the project. We only have two actors:

e System = {Note editor, synthesizer}

e Users = {Anyone who uses the program within their DAW}

The table below (Table 3.5.1) is an Access Control Matrix that specifies which actors
have access to which files. In this table R denotes read permission, W denotes write
permission.

Synthesizer Parameters Composition in the note
editor
System RW- RW-
Users W- -

Table 3.5.1 - access control and security matrix

Users trigger the required reading and writing operations through the system by clicking
the necessary buttons, images, or letter combinations. The system stands as a broker for the
user and the DAW.

All operations done by the user and any data generated on the program will stay in
the program. We will not read or keep any user data without explicitly asking for user
permission.

3.6 Global software control

The Editor and Synthesizer layer and DAW Manager subsystem of Microgliss is active as
long as the program is active. Changes that are made on the editor is played back in the
synthesizer to provide feedback to the user. The sound of the synthesizer is also always
responsive to the changes made in the Synth Editor subsystem.

As DAW playback starts and pauses this is detected by the DAW Manager
subsystem and the interactions of the Synthesizer and Editor layer is modified accordingly.

For many of its operations Microgliss needs to interact with the DAW. For an example
when the user makes a change in the program such as creating a node the program itself
notifies the host DAW of this change. DAW handles the necessary operations for the change
to occur and will later have control over reverting these changes. Overall the program has 2
main modes of operation.

No Playback

Program starts its life-cycle in this state but may exit from or come back to this state
depending on the information provided by the DAW manager. In this state changes that are
made in the editor are reflected in the synthesizer to provide user feedback. Any note input
to the note editor will be played by the synthesizer for a short moment. Any changes to the
synthesizer in the synth editor will result in the synthesizer sound changing.

Playback Active

The DAW manager brings the program into this state when playback is started. When the
playback is active in addition to the users real time input the composition on the note editor
is fed to the synthesizer. Any changes made in the editor is reflected in the synthesizer as
well, similar to when there is no playback.

Two other subsystems OSC Manager and File System manager are only active when they
are explicitly called from the editor. OSC Manager only gets activated when an OSC
connection with another device is set. And File Manager is only active when presets are
being loaded or saved.

Overall, the DAW manager has an effect to alter the ways in which the other subsystems
interact with each other. Editor layer controls the output of the Synthesizer layer which
produces the ultimate result of the system, the sound. The editor layer might also enable and
make use of 2 other subsystems file manager and OSC manager, when it's requested by the
user explicitly.

3.7 Boundary conditions

Set-Up

To set-up, the program an installer or user (manually) will install a VST file and default
presets into the defaults folder or the user-specified VST folder. Vst folders are the locations

where the DAW will look for plugins. After the folders are rescanned the plugin can be
imported to DAW and start running.

Initialization

In the initialization of the program, necessary connections with the DAW, such as
requesting output buffers and setting sound outputs, with the operating system, connecting
to the file system, and loading preset libraries will be made.

Playback Start

The note editor will send data about notes starts, ends and glissandos to the synthesizer
during playback.

Playback End

All the voices that are activated by the synthesizer must be stopped at the end of the
playback. Time-based synthesizer effects (such as delay) may continue.

Termination

Output buffer contents should be cleared when the plugin is terminated.

File I/O exception

If there is an error while reading files, or if the file is corrupted, any error should be
caught. At no point should the program crash because it might mean the loss of important
work for the creators.

4. Subsystem services

4.1 Synthesizer Layer
]

SYNTHESIZER LAYER

[1 [1

NOTE RECIEVE VOICE MANAGER

EFFECT MANAGER QUTPUT MANAGER

Note Receive

Receives note information from the editor layer and notifies the voice manager about
starting, ending, and changing notes.

Voice Manager

Assigns notes to voices (notes to be played and modified by the synthesizer over time)
and control the changes in these voices through their lifetime. Managing voice is a
specialized process and it involves the task of calculating the value of each sample of the
voice. Sample represents speaker movement which corresponds to subtle changes in air
pressure that creates sound.

Effect Manager

Effects such as delay and EQ will modify the sound generated by the voice manager for
further control over the character of the sound.

Output Manager
Normalizes and finalizes the sound output and sends it to DAW.

4.2 Editor Layer

]
EDITOR LAYER
1]
NOTE EDITOR SYNTH EDITOR
1]
NOTE READ NOTE SEND
Note Editor

Let the users compose music by adding, modifying, and removing nodes and edges.

Synth Editor

Edits the parameters of the synth which determines the characteristics of the sound to be
produced.

Note Read

Reads midi messages from the DAW and writes these messages into the note editor.
Written notes can later be modified to use the full capabilities of Microgliss.

Note Send

Sends note data to Synthesizer, for the note to be played.

4.3 Communication Layer

[]

COMMUNICATION LAYER

- - —

DAW MANAGER FILESYSTEM MANAGER 0SC MANAGER

Daw manager

Manages communication of important information such as playback location, midi-input,
and sound output with the Digital Audio Workstation.

Filesystem manager

Communicates with the file system to save and load presets (pre-configured synthesizer
parameters).

Osc manager

Establishes connections with other OSC (Open Sound Control) devices such as
instruments and synthesizers. Creates and sends OSC messages to control them.

5. Consideration of Various Factors in Engineering
Design

For any project, consideration of various factors such as public health, public safety,
public welfare, global factors, cultural factors and social factors is really important. Due to the
nature of the Microgliss(a music composition program basically) doesn’t contain any harm
for most of these subjects, but the music that microgliss will be used for mainly will have
cultural basis and might have global effect for contemporary music. There are some points
we should consider during the process and these points are stated in the table below.

Effect Level Effect

Public health No effect

Public safety No effect

Public welfare No effect

| O] O O

Increase in the accessibility
of the microtonal music
might lead to the birth of
new genres which embrace
the microtonality more. Also
popular music might start to
contain more microtonal
elements.

Global factors

Cultural factors 4 Increase in the accessibility
of the microtonal music
might cause more
embracement of the cultural
sounds by the new
generation.

Social factors 0 No effect

Table 5.1 - various factors in engineering design table

6. Teamwork Details

Microgliss’s development team consists of three Bilkent University Computer Engineering
students: Sonat Uzun, Artun Cura, and Orkan Oztrak. We all believe that teamwork is really
important for any project because every member is there for a reason and without their
contribution, the development process will slow down. This is why our main focus is to keep
the project moving. We constructed our plan and responsibility-sharing circularly. Everyone
must have an idea about the other parts of the software, even if each of us becomes more
involved with different systems. This ensures that if one of us can’t work due to some reason
others can take care of that part.

6.1 Contributing and functioning effectively on the team

We all believe that contributing to the team and playing our role as a team member is
really important. We are a small team so ensuring that each of us is working and active most
of the time, we selected some parameters which can show us how we are working through
the team. These measures can be listed as:

° # of Github commits
of Github Issues Resolved
of Trello tasks finished
Accuracy in regards to meeting Trello deadlines
Success to implement deliverables and completion of assigned tasks

Activeness in Whatsapp senior project conversations

Activeness in Discord talks about the project

Participation in online meetings

Participation in real-life meetings (We might not have any due to pandemic
conditions)

All of us should have similar numbers for each of these parameters if there is no special
condition such as sickness or no specific task assigned. Being a part of the team is
important. In an exceptional case, we will try to motivate the lower scored team member
because letting someone not doing any work shouldn’t be an option.

6.2 Helping to create a collaborative and inclusive environment

To create a collaborative and inclusive environment we divide the task into subtasks and
share them at the start of the process. Everyone knows that their part is important for the
accomplishment of the project, so everyone tries to improve the project by doing their task
well. We always try to keep in touch, check each other, and discuss our problems using
mobile communication apps such as Whatsapp and Discord. After we complete our parts we
merge them and everybody checks the whole product from start to end and ensures that
these smaller parts fit into each other as a whole smoothly and creates one final product.

6.3 Taking lead role and sharing leadership on the team

We believe that having a leader on the team is important because leaders are important
for the regulation of the project. Planning, talking with other team members, motivating or
warning them if necessary, and ensuring that the project is moving forward each day is their
job and this keeps the team alive.

We all know that this leader and team member relationship is not something like a boss
and employee relationship. Instead of a hierarchical imposition, our aim for having a leader
is to regulate the process. Everyone is equal and has a right to talk. Contributing is essential
for this project to improve. For our project we have chosen Artun as the leader, but
depending on our schedule leadership can be transferred and shared among each member
throughout the project.

