
1 

 

Bilkent University 

 

Senior Design Project 
microgliss: a microtonal editing tool for the world music  

Low-Level Design Report 

Group Members: Artun Cura, Sonat Uzun, Orkan Öztrak 

Supervisor: Vis. Prof. Dr. Fazl ı Can  
 
Innovation Expert: Burcu Coşkun Şengül  
 
 
 
 
Analys is  Report  
February 8,  2021 

 
 
 
 
 
 

This report is submitted to the Department of Computer Engineering of Bilkent University 

in partial fulfillment of the requirements of the Senior Design Project course CS492. 

Department of Computer Engineering 



 

 
Introduction 3 

Object design trade-offs 3 
Functionality vs. Usability 3 
Compatibility vs Extensibility 3 
Cost vs. Performance 4 

Interface documentation guidelines 4 

Engineering Standards 4 

Definitions, acronyms, and abbreviations 5 

Packages 5 
Processor Layer 6 

PluginProcessor 6 
SynthProcessor 6 
EffectProcessor 6 
NoteProcessor 6 
Voice 6 

Editor Layer 7 
PluginEditor 7 
NoteEditorFrame 8 
NoteEditor 8 
SynthesizerEditor 8 
EditorNode 8 
EditorEdge 8 

IOManagerLayer 8 
DAWCommunicationManager 8 
SaveLoadManager 9 
MicrotonalFileImportManager 9 
sclDataPack 9 
tunDataPack 9 
sclFile 9 
tunFile 9 

Class Interfaces 9 
Processor Layer 9 

Plugin Processor 9 
Synth Processor 10 
Effect Processor 10 
NoteProcessor 11 
Voice 11 
 
 



 

Editor Layer 12 
Plugin Editor 12 
Synthesizer Editor 12 
Note Editor Frame 13 
Note Editor 13 
Editor Node 14 
Editor Edge 14 

I/O Manager Layer 15 
Save Load Manager 15 
DAW Communication Manager 15 
Microtonal File Import Manager 16 
scl Data Pack 16 
tun Data Pack 16 

Glossary 17 

References 18 
 

 

 

 

 

 

 

 

 

 

  



 

Introduction 
Microgliss is a note editor and synthesizer that allows you to write microtonal music with 
polyphonic glissandos using an intuitive node and edge-based workflow. It will allow users to 
write music in any tuning system or independent of any tuning system. It will allow users to 
add glissandos between any notes. Microgliss is designed keeping in mind the growing 
interest in microtonal music around the globe and the common limitations of existing 
midi/note editors and synthesizers. Using midi editors is a common method for composing 
computer music. But MIDI editors have limitations that can’t be solved or only can be solved 
with non-elegant workarounds. Some of these limitations are 128 different values for 
velocity, 128 different note values (pitch), once a note’s value and velocity are set they can 
not be changed until that note is released, enforcement of a grid system for pitch values (as 
a result of 128 note limitation), no glissandos for multiple notes, etc.  
 
World music is not constructed on a grid. Every culture has its own unique sounds, pitches, 
and scales which emerged from freedom. But today’s computer systems make the 
production of world music(non-western music) harder for the users because all of the 
systems are constructed around western culture. We are trying to solve these problems with 
microgliss. 

Object design trade-offs 
While developing and designing software, developers need to sacrifice a part of the 
functionality to enhance some part of the other functionality. This process is called object 
design trade-off and in the following sections, the trade-offs we have encountered during the 
development of microgliss will be presented and explained. 

Functionality vs. Usability 
Microgliss’ aim was to offer solutions to some problems which current systems bring-along. 
We tried to keep these new solutions as simple as possible user-wise to ensure that they 
don’t encounter too many new things and get confused.  
 
When you inspect a musical entity such as a basic sine wave, it is easy to see that it has 
many parameters such as amplitude, frequency, phase, etc. and these parameters are 
easily manipulatable; but also it shows that when we have multiple entities, letting every 
parameter get controlled by the user might result in the loss compactness and clarity of the 
program pretty quickly. To eliminate that, we tried to choose usability over functionality. 

Compatibility vs Extensibility 
At the start of the development process, we chose the JUCE Framework which lets us 
export our program in VST(Virtual Studio Technologies) and AU format, a format most of the 
current digital audio workstations support. The reasoning behind this decision was making 
our program compatible with almost all of the Digital Audio Workstations and not caring 
about the details about the compatibility team-wise. 
 



 

We wanted to invest our time on developing new features and enhancing the existing ones, 
instead of trying to export in more formats. So we can say that extensibility is more important 
for us than compatibility because that function is handled by the framework we chose. 

Cost vs. Performance 
Digital Audio Workstation users usually work with many channels(sometimes up to 200 
channels), which means there might be multiple microgliss instances that produce sound 
simultaneously in addition to other plugins and recorded instruments. If these channels use 
the CPU heavily and require more processing power than they should, real-time listening 
functions of the DAW’s start to stutter and give a glitchy sound. This is why a music plugin 
should work as efficiently as possible. This is also the reason why we choose performance 
over the cost in the development of the microgliss. 

Interface documentation guidelines 
In this report, we named classes as “ClassName”, variables as “variableName” and methods 
as “methodName()”. They might be considered as the standard way of naming these 
components. The overall hierarchy starts with the class name, followed by its purpose and 
explanation, then its attributes, and methods. 
 

 
 

Engineering Standards 
During the reporting of our senior project, we used UML Guidelines [1] to define class 
interfaces, diagrams, scenarios, use cases, and subsystem compositions and hardware. For 
the citations, the report follows IEEE’s [2] standards. We chose UML and IEEE because both 
of them are commonly used ways to generate diagrams, and every member of our team 
knew it. 

class ExampleClass 

This class is an example for this report 

Attributes 

private string name 
private int age 
private bool hasGraduated 

Methods 

 

 

public string getName() 
public void setAge(int age) 
public void setGraduated(bool graduated) 

returns the name of the object 
sets the age attribute. 
sets the hasGraduated attribute. 



 

Definitions, acronyms, and abbreviations 
All definitions, acronyms, and abbreviations used in this report are explained in the glossary 
section. 

Packages 
Microgliss is composed of three main layers which are Processor layer, Editor layer, and 
IOManager layer. This layer system is updated after the High-Level Design document. 
 
The relation between them can be seen in the graph below.  
 

 
 
Processor Layer is responsible for sound generation, signal transmission, and in-app data 
management. This layer has ​PluginProcessor​, ​SynthProcessor​,​ EffectProcessor, ​and 
NoteProcessor.​ The second layer is the Editor Layer. It controls most of the visuals, buttons, 
and some basic operation logic. This layer has ​PluginEditor, NoteEditorFrame, NoteEditor, 
EditorNode,EditorEdge ​and ​SynthesizerEditor​. The third and last layer of microgliss is the 
IOManager Layer.  
This layer is responsible for the filesystem operations such as save/load or import/export. 
This layer has ​SaveLoadManager, DAWCommunicationManager, 
MicrotonalFileImportManager,​ and two little structs ​sclDataPack ​and ​tunDataPack ​for 
external tuning system import. 
 
 
 
 
 



 

Processor Layer 
 

 

PluginProcessor 
A class that is responsible for sound generation and buffer operations. 
 

SynthProcessor 
A class that contains synthesizer parameter data and synth-related sound generation 
functions. 
 

EffectProcessor 
A class that contains the basic effect operations such as distortion and EQ. Also holds their 
data. 

 
NoteProcessor 
A class that contains the voices and note related operations. 
 

Voice 
A struct with ADSR and frequency information. 
 
 
 



 

Editor Layer 
 

 

PluginEditor 
A class that contains visual components of the outer plugin frame. That frame contains the 
logo, tuning file import operation button, and editor/synth selection buttons. 
 



 

NoteEditorFrame 
A class that contains components of the outer editor frame. These components are beat and 
cent information. 

NoteEditor 
A class that contains the nodes, edges and their add/remove/modify operations. 

 
SynthesizerEditor 
A class that contains the ADSR options and wave settings of the microgliss’ synthesizer. 
 

EditorNode 
A class that contains the node data and controls the visuals. 
 

EditorEdge 
A class that contains the edge data. 
 

 

IOManagerLayer 

 

DAWCommunicationManager 
A class that manages the transmission of the information such as playback location and 
sound output between the plugin itself and DAW. 
 



 

SaveLoadManager 
A class that manages the save/load operations of microgliss’ editor and synthesizer. 
 

MicrotonalFileImportManager 
A class that controls the microtonal file import operations for the grid layout. 
 

sclDataPack 
A struct that holds the fundamental scl tuning data. 
 

tunDataPack 
A struct that holds the fundamental tun tuning data. 
 

sclFile 
A struct that holds the scl description, number of notes and tuning data. 
 

tunFile 
A struct that holds the tun description, number of notes and tuning data. 

Class Interfaces 

Processor Layer 

Plugin Processor 
 

class PluginProcessor 

This class is responsible for sound generation and buffer operations. 

Attributes 

private juce::AudioProcessorValueTreeState processorState 
private double currentSampleRate 
private double currentBitDepth 
private juce::ValueTree editorNodes  
private juce::ValueTree editorEdges 
private int waveSelection 

Methods 

 



 

 

Synth Processor 
 

 

Effect Processor 
 

 

public void updateWaveSelection(int 
Wave) 
public int getWaveSelection() 
public juce::ADSR::Parameters 
getADSRParameters() 
public void prepareToPlay(double 
sampleRate) 
public void processBlock() 
public void releaseResources() 

changes the selected wave 
 
returns the selected wave 
returns the current ADSR parameters 
struct 
prepares the plugin to play sound 
 
processes the audio block 
releases dedicated resources for audio 

class SynthProcessor 

This class contains synthesizer’s parameter data and synth-related sound generation 
functions. 

Attributes 

private juce::ADSR::Parameters adsrParams 
private float mainVolume 

Methods 

 

 

public float rect( float angle, float duty) 
public float triangle( float angle, float duty) 
public float noise( float angle, float 
resolution) 

generates a square wave signal 
generates a triangle wave signal 
generates a noise signal 

class EffectProcessor 

A class contains the basic effect operations such as distortion and EQ. 

Attributes 

private float distortionRatio 
private juce::ComboBox distortionType 
private vector<EQCurve> eqCurvePoints 

Methods 

 



 

 

NoteProcessor 
 

 

Voice 
 

 

public void changeDistortionType() 
public void addEQCurvePoint() 
public void 
removeEQCurvePoint(EQCurve* eq) 
public void resetEQCurvePoint() 
public void 
updateSignalWithCurrentFX(float stream) 

changes the distortion type 
adds an eq curve point 
 
removes the eq curve point specified in the 
argument 
updates the output signal with current FX 

class NoteProcessor 

This class contains the voices and note related operations. 

Attributes 

private int voiceCount 
private Voice[] voices 
private list<Voice*> releasedVoices 

Methods 

 

 

public void NoteOn(int id) 
public void NoteOff(int id) 
public void noteUpdate(int id, float freq) 
public Voice* getVoiceWithID(int id) 
public Voice* getFreeVoice() 
public void checkVoicesAndKill() 

activates a voice 
releases a voice 
updates a voices frequency 
returns voice with the given id 
returns an unused voice 
terminates voices that are no longer being 
used 

struct Voice 

This struct holds voice envelope and frequency information. 

Attributes 

public int id = -1 
public juce::ADSR adsr 
public double currentAngle = 0.0 
public angleDelta = 0.0 



 

Editor Layer 

Plugin Editor 
 

 

Synthesizer Editor 
 

class PluginEditor 

This class contains visual components of the outer plugin frame. That frame contains the 
logo, tuning file import operation button and editor/synth selection buttons. 

Attributes 

private int topbarHeight 
private int horizontalSteps 
private int verticalSteps 
private int neMargin 
private int neFrameWidth 
private NoteEditorFrame* noteEditorFrame 
private juce::Button synthSwitchButton 
private juce::Button editorSwitchButton 

Methods 

 

 

public void resized() 
public void paint() 

updates components when resized 
draws the graphical component 

class SynthesizerEditor 

This class contains the ADSR options and wave settings of the microgliss’ synthesizer. 

Attributes 

private float height 
private float width 
private juce::Button attack1 
private juce::Button decay1 
private juce::Button sustain1 
private juce::Button Release1 
private juce::ComboBox waveMenu 

Methods 

 



 

 

Note Editor Frame 
 

 

Note Editor 
 

 

public void generateLabels() 
public void 
sliderValueChanged(juce::Slider* slider) 
public void resized() 
public void paint() 

generates and assigns the note labels 
gets called whenever the slider value 
changes 
updates components when resized 
draws the graphical component 

class NoteEditorFrame 

This  class contains components of the outer editor frame. These components are beat 
and cent information. 

Attributes 

private private float height 
private float width 
private NoteEditorField* noteEditorField 

Methods 

 

 

public void generateLabels() generates and assigns note and time 
labels to grid 
 

class NoteEditor 

This class contains the nodes, edges and their add/remove/modify operations. 

Attributes 

private int verticalSteps 
private int horizontalSteps 
private float scalex 
private float scaley 
private float playbackPos 
private int uniqueIDCount 

Methods 



 

 

Editor Node 
 

 

Editor Edge 

 

 

 

public void addNode() 
public void removeNode() 
public void updateNode() 
public void xtobeat() 
public void ytocent() 
public void snapToGrid(float percent) 
public void setPlayback() 
public void mouseDown() 
public void mouseDrag() 

adds node to the editor 
removes node from the editor  
updates the node information of a node 
converts x position info time data 
converts y position info frequency data 
snaps the node to the grid 
sets the playback position of the grid 
gets called when the mouse get clicked 
gets called when the mouse get dragged 
 

class EditorNode 

This struct contains the node data and controls the visuals. 

Attributes 

private float cent 
private float beat 
private bool hasEdge 

Methods 

 

 

public void paint() paints the graphics of the component 

struct EditorEdge 

This struct contains the edge data. 

Attributes 

public EditorNode* start 
public EditorNode* end 



 

I/O Manager Layer 

Save Load Manager 
 

 

DAW Communication Manager 
 

 

class SaveLoadManager 

This class manages the save/load operations of microgliss’ editor and synthesizer. 

Attributes 

private juce::AudioProcessorValueTreeState appState 

Methods 

 

 

public void saveCompositionAsXML(juce::String 
path) 
public void loadCompositionASXML() 
public void saveSynthPresetAsXML(juce::String 
path) 
public void loadSynthPresetASXML()) 

saves the editor data as xml 
 
loads the selected editor data as xml 
saves the synth data as xml 
 
loads the selected synth data as xml 

class DAWCommunicationManager 

Thıs class manages the transmission of the information such as playback location and 
sound output  between the plugin itself and DAW . 

Attributes 

private juce::AudioProcessorValueTreeState* processorState 

Methods 

 

 

public void getStateInformation() 
public void setStateInformation 
(juce::AudioProcessorValueTreeState* 
processorState) 

returns the processor state 
sets the processor state as the passed 
parameter 



 

 

Microtonal File Import Manager 
 

 

scl Data Pack 
 

tun Data Pack 
 

class MicrotonalFileImportManager 

This class controls the microtonal file import operations for the grid layout. 

Attributes 

private PluginProcessor* pluginProcessor 

Methods 

 

 

public void printSclData() 
public sclFile* importSCLFile(juce::String 
path) 
public std::vector<float> 
sclToCents(sclFile* sclfile, float baseFreq) 
public sclFile* importTunFile(juce::String 
path) 
public std::vector<float> tunToCents(tun* 
tunfile, float baseFreq) 

prints the scl data to debugger 
imports and parses an scl file 
 
converts scl data to cents data according 
to the base frequency 
imports a *.tun file and parses it 
 
converts tun file to cents data according to 
the base frequency 

struct SCLDataPack 

Thıs struct holds the fundamental scl tuning data. 

Attributes 

public float value; 
public bool isRatio; 
public bool isCent; 

struct TUNDataPack 

A struct which holds the fundamental tun tuning data. 

Attributes 

public float value; 
public int noteName 



 

 

Glossary 
Microtonal Music:​ Music that consists of intervals that are smaller than a semitone. This 
term also includes any tuning system which differs from the western 12-tone tradition.  
 
Synthesizer:​ An electronic musical instrument that generates audio signals. Glissando: 
Sliding from one note to another seamlessly.  
 
DAW: ​Digital Audio Workstation. Comprehensive musical programs that are designed for 
recording, editing, and producing music.  
 
Automation:​ Automation in the context of DAW’s is lines usually drawn by hand to change 
parameters of a track (eg: volume/pan) and/or a plugin (eg: mix) over time.  
 
VST:​ A plug-in format for a digital audio workstation.  
 
OSC: ​Open Sound Control. A protocol for networking sound synthesizers, computers, and 
other multimedia devices for purposes such as musical performance.  
 
JUCE:​ An open-source C++ Framework that is used for the development of desktop and 
mobile applications for GUI and Audio tools.  
 
Trello:​ A basic project management tool. Its main use is for Agile project development but 
we will also use Trello with the Iterative approach.  
 
Note:​ A symbol denoting a musical sound.  
 
MIDI:​ Musical Instrument Digital Interface. A communication protocol for musical instruments 
and controller devices.  
 
Preset:​ Pre-saved synthesizer settings. They can also be produced by different professional 
sound-designers for end-user use.  
 
Sample:​ A sample, which is a floating point value, is the smallest component of the digital 
representation of the sound. A one second sound stored in a computer consists of over 
40000 samples (usually 44100 or 48000). These samples are written into buffers in and 
speakers vibrate according to the data in the buffers, therefore generating sound. Each 
sample represents subtle changes in air pressure which we perceive as sound. 
 
Beat: ​Rhythmic unit in music. 
 
Bpm( Beats per Minute ): ​Defines how fast the music will be. Higher bpm means that the 
music will be faster. 
 



 

Cent: ​1/100th of a semitone in 12-tone equal temperament tuning, which is the default and 
most common way of tuning western musical instruments. Cent is often used in defining 
microtonal scales as well as deviations of a note from tuning. 

References 
 
[1] “Unified modelling language.” https://www.visual-paradigm.com/guide/ 
uml-unified-modeling-language/what-is-uml/. [Accessed: 3- Feb- 2021] 
 
[2] “Ieee reference guide.” 
https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf 
[Accessed: 3- Feb- 2021] 


